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1. Introduction and summary

A fascinating aspect of string theory is duality, the equivalence of seemingly different de-

scriptions of a physical system. In some classes of duality, physical objects placed in a

region of spacetime have a description in terms of different kind of objects. An important

example is geometric transition: when many D-branes are placed on top of each other,

the system is better described by a new geometry with no D-branes. Study of geometric

transitions has led to many important insights and results, including AdS/CFT correspon-

dence [1], microscopic explanation of black hole entropy [2], and the relation between gauge

theories and matrix models [3, 4].

Another class of such “local” duality is the transition of fundamental strings to D-

branes (we will call it the string/brane transition), in which a system of many coincident

strings can be described by D-branes that replace the strings. As an example, let us

consider the BIon solution [5, 6]. When many fundamental strings end on a D-brane, the

D-brane world-volume backreacts and develops a spike, which sticks out in the direction of

the strings. Such embedding of the world-volume to spacetime is a solution to the equations

of motion of the Born-Infeld action, and it is a dual description of the strings. Another

early example appeared in AdS/CFT correspondence: the Kaluza-Klein graviton modes

(fundamental strings that rotate in the 5-sphere) puff up into giant gravitons (D-branes

that wrap a 2-sphere and rotate in the 5-sphere) [7 – 9]. A newer example of string/brane

transition was found in the study of Wilson loops in AdS/CFT. The Wilson loop in the

fundamental representation is described by a string world-sheet that extends in the bulk
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S3 R2 × S1

(a) (b)

Figure 1: A BIon in the deformed conifold (an artist’s impression). (a) Fundamental strings end

on D-branes wrapping the S3. The end points are along a knot suppressed in the figure. (b)

D-branes develop a “spike” and become non-compact with topology R2 × S1.

of AdS5 and ends along the loop on the boundary [10]. For higher representations, the

Wilson loops have bulk realizations in terms of D3- or alternatively D5-branes [11 – 14].

Such D-branes are the dual descriptions of many fundamental strings.

In this paper, we propose similar transitions in topological string theory. An illumi-

nating example is the analog of a BIon. Consider the deformed conifold (the total space

of T ∗S3) and wrap P D-branes around the S3. Let many non-compact string world-sheets

end on the branes along a knot, and suppose they extend in the fiber direction as shown in

figure 1a. This system is equivalently described by P non-compact D-branes of topology

R2 × S1 without strings,1 as in figure 1b. We motivate the string/brane transitions in two

ways.

First, these transitions play a role in gauge/gravity correspondence [1, 16]. There is a

universal pattern in the correspondence between operators of the form TrR(. . .) in gauge

theory, and their dual objects in gravity. These operators are labeled by a Young tableau

R, which specifies a representation of U(N). Each box corresponds to a fundamental

string, a single row to a D-brane, a single column to another type of D-brane, and a large

rectangle to a new cycle in geometry. With Wilson loops in Chern-Simons theory taken

as an example, the transition of strings to branes and the further transition of branes to

geometry are summarized in figure 2.2 This paper studies the transition of strings to branes

in more general settings. The related reference [17] focused on the general transition of

branes to geometry.

Second, another line of development found that D-brane amplitudes in topological

string theory are wave functions of Chern-Simons theory [23]. The relevant D-branes are

non-compact, and a state in the Hilbert space specifies the boundary condition at infinity.

As in ordinary quantum mechanics, one performs the Fourier transform of wave functions

1The equivalent transition in the resolved conifold was discussed in [15], and is revisited in appendix D,

where a more elementary calculation is presented.
2 We choose the convention so that a anti-brane here is a D-brane (rather than an anti-brane) in [15]

and vice versa, for reasons explained in footnote 10.
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Fundamental

string

D-brane

Anti-brane Bubbling Calabi-Yau

Figure 2: Gravity duals of a Wilson loop in Chern-Simons theory. A string corresponds to

the fundamental representation, a D-brane to a symmetric representation, an anti-brane to an

anti-symmetric representation, and a bubbling Calabi-Yau to the representation specified by a

rectangular Young tableau [15, 17]. For a local operator in N = 4 Yang-Mills, replace (D-brane,

Anti-brane) in the figure by (D3-brane wrapping S3 ⊂ AdS5, D3-brane wrapping S3 ⊂ S5) [7 –

9, 18, 19]. For a Wilson loop in the same theory, replace it by (D3-brane wrapping S2 ⊂ AdS5,

D5-brane wrapping S4 ⊂ S5) [11 – 14]. For the both operators in Yang-Mills, replace (bubbling

Calabi-Yau) by (bubbling supergravity solution) [20 – 22].

when we change the basis. In an appropriate basis, the boundary condition is consistent

with two descriptions that are seemingly different. In the first description, the boundary

condition picks out a specific configuration of strings ending on the branes. We can regard

the branes as an effective cut-off to the infinite world-sheets, and we interpret the system as

the configuration extended strings. In the second description, the same boundary condition

specifies a particular value of the holonomy carried by the branes. Consistency requires

the equivalence of the two descriptions.

The rest of the paper assumes the knowledge of topological strings in toric Calabi-

Yau manifolds [24]. In section 2, we propose the transitions of strings to D-branes in

such geometries. We prove the equality of partition functions in the two descriptions as

evidence for the proposal. Next, section 3 discusses the analog of BIons. This is the

large N dual reinterpretation of the string/brane transitions in section 2. We propose

that fundamental strings ending on compact D-branes are dual to non-compact D-branes,

and verify the proposal by matching their partition functions. Finally in section 4, we

explain that a certain boundary condition admits two characterizations, one in terms of a

string configuration and the other in terms of holonomy of the branes. Their compatibility

is a physical explanation of the string/brane transition. In appendix A we present an

elementary derivation of the equality between the unknot Wilson loop vev and a D-brane

amplitude. We also formulate a conjecture that relates knot polynomials and D-brane

amplitudes for general knots. Other appendices explain the formalisms and calculations

that are used in the main text.
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2. String/brane transitions in toric Calabi-Yau manifolds

As a basic example of the transition of strings to D-branes, we consider gravity duals of

Wilson loops in Chern-Simons theory. If the Young tableau R has P rows, the Wilson

loop TrRPe−
H

A is dual to P D-branes in the resolved conifold with holonomy determined

by R [15]. The Wilson loop is a linear combination of multi-trace operators and each

single trace is dual to a fundamental string wrapping a non-compact holomorphic surface.

Therefore the D-brane configuration is a superposition of multi-string states, just as argued

for giant gravitons in [18]. The Frobenius relation

TrRU =
∑

~k

1

z~k
χR(C(~k))Tr~kU (2.1)

tells us how to superpose the multi-string states. Here C(~k) is the conjugacy class of

the symmetric group Sk specified by the partition ~k = (k1, k2, . . .) of k =
∑

j jkj , and

the symbol χR(C(~k)) denotes the character. We have also defined z~k ≡
∏

j kj !j
kj and

Tr~kU ≡
∏

j(TrU j)kj . Let F1~k
be the state that has kj strings wrapping the holomorphic

surface j times for all positive integers j. Then the superposition

F1R ≡
∑

~k

1

z~k
χR(C(~k))F1~k

(2.2)

is dual to the D-branes.

For generalization, let us now consider an arbitrary toric Calabi-Yau manifold specified

by a web diagram. A semi-infinite edge represents a non-compact cycle of topology R2, and

shares a vertex with two other edges as shown in figure 3a. Let us consider the configuration

F1R of strings wrapping the cycle as defined above. We propose that these strings are dual

to P D-branes inserted at a neighboring edge (figure 3b). As in [15], the distance of the

i-th brane from the vertex is

yi ≡ gs(Ri − i+ P + 1/2), (2.3)

where Ri is the number of boxes in the i-th row. Generalizing the anti-brane realization of

Wilson loops [15], we also propose that the strings are dual to M anti-branes at another

neighboring edge (figure 3c). M is the number of columns in R, and the i-th anti-brane is

distance xi ≡ gs(R
T
i − i+ 1/2 +M) away from the vertex.

We now provide quantitative evidence for our proposals, by showing the equality of the

partition functions in the three descriptions. How do we define the partition function for

the fundamental strings? We define the function Z~k
as the sum of all world-sheet diagrams

that share the asymptotics F1~k
. The asymptotics requires us to include kj world-sheets

that are wrapped j times for all j. Since the world-sheets are non-compact, we regularize

the values of the diagrams by subtracting the infinite area. We then define the partition

function for the configuration F1R as

ZR ≡
∑

~k

1

z~k
χR(C(~k))Z~k

. (2.4)
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F1R

R2

R3

t2

t3

R3

R2

Q2 Q

t2 + gsP

t3 − gsP

R3

R2

Q3

Q

t2 − gsM

t3 + gsM

(a) (b) (c)

Figure 3: (a) Non-compact string world-sheets in a toric Calabi-Yau manifold. (b) The strings

puff up into the D-branes represented by the dashed lines. The holonomy is gauge equivalent to

the positions of branes. (c) The strings are replaced by anti anti-branes.

The partition functions ZR and Z~k
for strings are related to the partition function Z(V )

in the presence of D-branes with holonomy V as

Z(V ) =
∑

R

ZRTrRV =
∑

~k

1

z~k
Z~k

Tr~kV, (2.5)

because Z(V ) is defined as a sum over all string configurations.3 Because D-brane ampli-

tudes can be computed using the topological vertex CR1R2R3(q) [24], so can the partition

functions for the strings. We find that4

ZR =
∑

R2,R3

CRR2R3(q)e
−|R2|t2e−|R3|t3 × . . . , (2.6)

where we have defined q ≡ e−gs and gs is the string coupling constant. |Ra| denotes the

number of boxes in the Young tableau Ra. The Kähler moduli t2 and t3 are defined in

figure 3a. The topological vertex amplitude CRR2R3 represents the contribution from the

vertex at the center of figure 3a. We focus on it because all the rest in ZR is not affected

in the transitions.

For the test of string/D-brane transition, the key identity is5

CRR2R3 = ξ(q)P
∏

1≤i<j≤P

(1 − e−(yi−yj))e|R3|gsP−|R2|gsP q−
1
2
κR2

+ 1
2
||RT ||2

×
∑

Q2,Q

C·Q2R3(−1)|Q2|q
1
2
κQ2TrQ2/QUR(−1)|Q|TrR2

T /QTUR
−1. (2.7)

Let us explain the notation. We have defined ξ(q) ≡ 1/
∏∞

j=1(1 − qj), κR ≡
∑

i(Ri −

2i + 1)Ri, ||R||
2 ≡

∑
iR

2
i , and UR ≡ diag(e−yi)P

i=1. R
T is the transposed diagram. The

3Section 4 studies the relation between ZR and Z(V ) in more detail.
4Our convention is such that q → q−1 relative to [24]. Appendix C summarizes useful formulas.
5For the reason explained in section 4, it is slightly more natural to consider q

1

2
κRCRR2R3

. When we

apply (2.7) to q
1

2
κRCRR2R3

, RT does not appear.
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symbol TrR/Q(X) denotes the skew Schur polynomial sR/Q (B.11) whose arguments are

the eigenvalues of the matrix X. We prove the identity (2.7) in appendix D.

After we apply the identity (2.7) to (2.6), ZR becomes the partition function for P

D-branes at distances yi from the vertex (figure 3b).

We can see this as follows. According to the gluing rules of [24], the second line of (2.7)

indicates that P D-branes are inserted at distances yi. The holomorphic annuli between

the i-th and j-th D-branes contribute the factor (1 − e−(yi−yj)). The extra exponential

e|R3|gsP−|R2|gsP tells us that the edge associated with R2 grows in size by gsP while the

one associated with R3 shrinks by the same amount. An arrow in the figure indicates the

framing that we read off from the factor q−
1
2
κR2 .6

We can also use the following identity to verify the string/anti-brane transition:7

CRR2R3 = ξ(q)M
∏

1≤i<j≤M

(1 − e−(xi−xj))q−M |R2|+M |R3|q
1
2
||RT ||2

∑

Q3,Q

C·R2Q3(−1)|Q3|

×TrQ3
T /QURT (−1)|Q|TrR3/QTU−1

RT . (2.8)

Here URT ≡ diag(e−xi). The rules for inserting anti-branes are summarized in section 4

of [17]. After we apply the identity to (2.6), ZR becomes the partition function for the

anti-branes in figure 3c. The size of the edge with anti-branes increases by gsM , and the

adjacent edge shrinks as much. Figure 3c also shows the framing of the anti-branes.

To summarize, we have shown the equality of the partition functions in three descrip-

tions, namely those in terms of strings, D-branes, and anti-branes. This section has mostly

focused on the quantitative evidence, and section 4 will give a physical explanation of

the transitions. Before doing that, in the next section we will deal with a large N dual

reinterpretation of the string/brane transitions.

3. BIons

Let us consider a D-brane in physical string theory with many transverse fundamental

strings ending on it. This system has a dual description as a solution to the equations

of motion of the Born-Infeld action [5, 6]. The brane world-volume has a spike poking

out in the transverse direction, and the electric flux supports the non-trivial profile. The

spike has replaced the coincident strings, and there non-zero gauge flux as the remnant of

string charge. Such a brane solution is known as a BIon [6], and we propose its analog

in topological string theory. We will begin with a basic example and generalize it in two

steps.

Let us now turn to topological string theory on the deformed conifold with P D-branes

wrapping the S3. We consider fundamental strings ending on the branes along the unknot,

and assume that they are in the multi-string state F1R defined in the previous section.

Recall that R has P rows. The system is shown in figure 4a, where the two solid lines are

6The function ξ(q)P is not important in perturbation theory, and no clear interpretation is known. The

factor q
1

2
||RT ||2 combined with

Q

(1−e−(yi−yj)) makes the whole expression anti-symmetric in yi, exhibiting

the fermionic nature of the non-compact D-branes.
7The proof is completely parallel to the proof of (2.7) and is omitted.
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P

F1R

P

(a) (b)

Figure 4: (a) The configuration F1R of multi-wrapped strings inserts the Wilson loop in R into

the U(P ) Chern-Simons theory on P D-branes. (b) The compact D-branes develop a “spike” and

become non-compact. Strings dissolve into holonomy.

the degeneration loci of the T 2 fibers [25]. We denote by α and β the generators of 1-cycles,

and they degenerate along the horizontal and vetical lines, respectively. We propose that

the strings together with the compact D-branes are dual to P non-compact branes. The

P D-branes carry holonomies

ŷi ≡ gs

(
Ri − i+

1

2
(P +N + 1)

)
, i = 1, . . . , P. (3.1)

In the transition the D-branes develop “spikes” and become non-compact, while the fun-

damental strings dissolve into the holonomies,8 as shown in figure 4b. The holonomies tell

us where we locate the branes.

The evidence for this duality is the following observation. The reasoning in the previous

section leads us to define the partition function for the strings and compact branes to be

the vev of the Wilson loop in the representation R. If the loop is the unknot, the vev is

the modular S-matrix element S
(P )
0R (q) for the U(P ) current algebra. The part captured

by perturbation theory is

S
(P )
0R ∼

∏

1≤i<j≤P

(1 − qRi−Rj−i+j) =
∏

1≤i<j≤P

(1 − e−(byi−byj)). (3.2)

The r.h.s. is the contribution of annulus diagrams between the non-compact D-branes [26].

Since there are no other non-trivial world-sheet instantons, this is precisely the partition

function of P non-compact D-branes with holonomy ÛR.

As a slight generalization, we consider N(> P ) D-branes on the S3 of the deformed

conifold and let fundamental strings F1R end on them as in figure 5a. We claim that this

system is dual to P non-compact D-branes plus N −P compact D-branes (figure 5b). The

partition function for the strings plus the N D-branes is the S-matrix element S
(N)
0R (q) for

8It is interesting to note the pattern: the role of fluxes in physical string theory is played by gauge fields

in topological string theory. In geometric transition, instead of RR flux the complexified Kähler form is

supported by the grown cycle. In a topological BIon configuration, the new cycle in the brane world-volume

supports the holonomy rather than field strength.
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N

F1R

N − P
P

N +M

M
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Figure 5: (a) The configuration of multi-wrapped strings, specified by R, inserts the Wilson loop in

R into the U(N) Chern-Simons theory on N D-branes. (b) P out of N compact D-branes develop

a “spike” and become non-compact. (c) The fundamental strings disappear. M new compact

D-branes and M non-compact anti-branes are pair-created.

the U(N) current algebra. We can show the equality9

S
(N)
0R (q) ∼

∏

1≤i<j≤P

(1 − e−(byi−byj))
∑

Q

S
(N−P )
0Q (q)TrQ diag(e−byi)P

i=1, (3.3)

which we interpret as follows.10 The l.h.s. is the partition function of N compact D-branes

with a configuration of fundamental strings that insert the Wilson loop in the representation

R. These fundamental strings turn into non-compact D-branes and at the same time strip

off P out ofN compact branes. The factor S
(N−P )
0Q (q) is the contribution from the remaining

N −P compact D-branes. The P non-compact D-branes with holonomies qRi−i+ 1
2
(P+N+1)

(i = 1, . . . , P ) contribute the rest. The sum is over annulus diagrams between compact

and non-compact D-branes.11

Similarly, we can show the identity

S
(N)
0R (q) ∼

∏

1≤i<j≤M

(1 − e−(xi−xj))
∑

Q

S
(N+M)
0Q (q)(−1)|Q|TrQT diag(q−RT

i +i+ 1
2
(N−M−1))M

i=1.

(3.4)

by using the results from [27, 15]. The r.h.s. is the partition function for N+M compact D-

branes andM non-compact anti-branes with holonomies q−RT
i +i+ 1

2
(N−M−1) (i = 1, . . . ,M).

Through the transition, N compact D-branes with strings have turned into N+M compact

D-branes and M non-compact anti-branes, as shown in figure 5c.12

We now generalize the geometry where the BIons sit. We consider a non-compact

Calabi-Yau geometry with the structure of T 2×R fibered over R3 [25, 28]. Such a geometry

9See (A.9) and (A.11) for derivation.
10 Making sense of this interpretation motivated the new convention for D-brane/anti-brane.
11The decrease in the number of compact D-branes explains the shift in the Kähler modulus of the large

N dual resolved conifold found in [15].
12The increase in the number of compact D-branes explains the shift in the Kähler modulus of the large

N dual resolved conifold found in [27, 15].
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F1R

N

t2t1

N − P
P

t′2t′1

M

N +M

t̃2t̃1

(a) (b) (c)

Figure 6: (a) A stack of string world-sheets ending on N compact D-branes wrapping S3. (b) The

strings ending on compact D-branes undergo BIon transition. P out of N compact D-branes develop

“spikes” and become non-compact. The Kähler moduli are given by t′1 = t1−
1

2
gsP, t

′

2 = t2 + 1

2
gsP .

(c) In another dual description the strings disappear and M compact D-branes and M non-compact

anti-branes are pair-created. The Kähler moduli are given by t̃1 = t1 −
1

2
gsM, t̃2 = t2 + 1

2
gsM .

is more general than toric Calabi-Yau manifolds, and the deformed conifold is a basic

example. The geometry is specified by a web diagram that is a generalization of the toric

diagram [25].

We assume that two lines of different orientations cross, and that one of them is semi-

infinite. By fibering T 2 along a segment connecting the two lines, we get a S3. Let us wrap

N D-branes around this S3 as in figure 6a. The local geometry near the S3 the deformed

conifold. Let us consider a configuration F1R of string world-sheets along the semi-infinite

line. The large N dual of the system has the resolved conifold as local geometry, and is

a special case of the situations considered in subsection 2 [25]. We simply reinterpret the

results there in terms of compact branes.

First, the strings ending on compact D-branes are dual to the system where P out of

N compact D-branes become non-compact as shown in figure 6b. The non-compact D-

branes have a particular framing indicated by the arrow in the figure. Second, the strings

on compact branes are dual to the system where the strings have disappeared and M new

compact D-branes and M non-compact anti-branes are pair-created. We thus have N +M

compact D-branes in total. This is shown in figure 6c together with the framing of the

anti-branes. Precise values of Kähler moduli receive well-known non-trivial shifts [29], and

they can be worked out by combining the results in section 2 and the results in the conifold

case. The values are also indicated in the figures.

Again we have focused on the quantitative evidence. Our BIon proposal is the large

N dual reinterpretation of the string/brane transitions discussed in the previous section.

We now turn to the physical explanation of the transitions.

4. String/brane transition and the Fourier transform

In the BIon solution of physical string theory, the spike on the world-volume is in the

direction of the original strings. However, in the topological string examples of string/brane

– 9 –
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α

β

−α− β

(a) (b)

Figure 7: (a) For C3, the 1-cycles α, β, and −α−β of the T 2 fiber degenerate along the right, upper,

and lower-left edges. There are P D-branes on the upper edge. We impose the asymptotic boundary

condition the gauge fields on the branes, and it picks out the configuration F1R of fundamental

strings ending on the branes along the 1-cycle α. (b) The boundary condition is also consistent

with the branes on the right edge with holonomy ÛR.

transition there is no obvious sense that the brane world-volume asymptotes to the string

world-sheet.

In this regard it is natural to introduce additional branes on which the strings end on.

For simplicity we focus on C3, which is the local geometry of any toric Calabi-Yau. The

geometry C3 has a T 2-fibration structure [24]. When we introduce non-compact D-branes,

the T 2 is identified with the asymptotic boundary of the world-volume. Let us denote by

α and β two 1-cycles that generate H2(T
2). The cycles α, β, and −α−β degenerate along

the edges in the web diagram as shown in figure 7a.

We place P non-compact D-branes on the upper edge. The world-volume has topology

R2 × S1, which we regard as solid torus. Since the world-volume has a boundary, we

need to impose a boundary condition on the gauge fields on the branes. The boundary

condition is a state in the Hilbert space of the Chern-Simons theory on T 2, and the D-brane

amplitude is a wave function. Let us canonically quantize the theory by taking
∮
αA as

coordinates and
∮
β A as conjugate momenta. We denote by (α, β) the polarization (choice of

conjugate variables), which is equivalent to the framing specified by the horizontal arrow

in figure 7a [24]. As a basis of the Hilbert space let us take the coordinate eigenstates

(α,β)〈V | such that

(α,β)〈V |Pe−
H

α
A = (α,β)〈V |V, (4.1)

where V is a P × P matrix. The D-brane amplitude Z(α,β)(V ) is the wave function

Z(α,β)(V ) = (α,β)〈V |Z〉, (4.2)

where |Z〉 is the state in the Hilbert space intrinsically defined by topological string the-

ory in the given background. The amplitude Z(α,β)(V ) is computed by summing over

many possible string configurations that end on the D-branes while fixing the background

holonomy V along α. This is the conventional treatment of non-compact D-branes [30, 24].

– 10 –
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α
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Figure 8: (a) The strings extended along the upper edge end on anti-branes along α. (b) The

boundary condition imposed on the anti-branes that pick out the configuration F1R of fundamental

strings is equivalent to the condition that the anti-branes end on the lower-left edge with holonomy

ÛRT ≡ diag(qRT
i −i+1/2+M/2)M

i=1.

Another important basis consists of states (α,β)〈R|. When the state (α,β)〈R| is used as

a boundary condition on non-compact branes, it picks out the configuration F1R of strings.

This is the defining property of the state. The Fourier transform

Z(α,β)(V ) =
∑

R

TrRV Z(α,β),R (4.3)

relates the D-brane amplitude Z(α,β)(V ) to

Z(α,β),R ≡ (α,β)〈R|Z〉, (4.4)

which is the partition function of strings in the configuration F1R as we defined in section 2.

Suppose we use the state (α,β)〈R| as a boundary condition for the P D-branes. It was

shown in [31] that (α,β)〈R| is in fact a momentum eigenstate:

(α,β)〈R|Pe
−

H
β

A = (α,β)〈R|ÛR, ÛR ≡ diag(qRi−i+1/2+P/2). (4.5)

On the upper edge, β is a contractible cycle and cannot support a non-trivial holonomy.

To interpret the non-trivial holonomy, we note that the cycle β is non-contractible on the

right edge. Indeed, (β,−α) is precisely the polarization for the D-branes on the right edge

with framing specified by the vertical arrow as shown in figure 7b. Therefore we have that

(α,β)〈R| ∝ (β,−α)〈ÛR|, (4.6)

and the partition function Z(α,β),R for strings should be identified with the partition func-

tion of the D-branes on the right edge with holonomy ÛR and the specified framing:

Z(α,β),R ∝ Z(β,−α)(ÛR). (4.7)

This is exactly what we found in section 2, and explains the string/brane transition.
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We can also understand the transition of strings to anti-branes. Let us begin with

the anti-branes with the framing specified by the arrow shown in figure 8a. This framing

corresponds to taking
∮
α+β A and

∮
β A as canonical coordinates and momenta, respectively.

The partition function can be expanded as

Z(α+β,β)(V ) =
∑

R

TrRV (α+β,β)〈R|Z〉. (4.8)

Since anti-branes are related to D-branes by substitution TrRV → (−1)|R|TrRT V [24], we

have that |Z〉 = C|Z〉, where C is the charge conjugation operator defined in appendix B.

Thus we find that

Z(α+β,β),R = (α+β,β)〈R|Z〉

= (α+β,β)〈R|CC|Z〉

= (−1)|R|(α+β,β)〈R
T |Z〉

∝ (β,−α−β)〈ÛRT |Z〉

= Z(β,−α−β)(ÛRT ). (4.9)

The matrix ÛRT is the holonomy along β, which is contractible on the upper edge but

non-contractible on the lower-left edge. Moreover, (β,−α − β) is the polarization for

Chern-Simons theory on the anti-branes sitting at the lower-left edge with the framing

given by the arrow in figure 8b. This argument implies that Z(α+β,β),R is proportional to

the partition function of the anti-branes with holonomy ÛRT , just as we found in section 2.
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A. Unknot Wilson loop vev as a brane amplitude

In this appendix we will rederive the relation between the unknot Wilson loop vev and

the partition function of D-branes in the resolved conifold. The original derivation in [15]

used a Calabi-Yau crystal in an intermediate step. Here we present a more elementary

derivation. We will also formulate a conjecture relating knot polynomials and D-brane

amplitudes for general knots.

For the canonically framed unknot, the normalized vevW
(N)
R (q) in U(N) Chern-Simons

theory is

W
(N)
R (q) = S

(N)
0R /S

(N)
00 = TrR diag(q−i+1/2+N/2)N

i=1. (A.1)
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We manipulate this expression as

det1≤i,j≤N (q(−i+1/2+N/2)(Rj−j+N))

det1≤i,j≤N (q(−i+1/2+N/2)(−j+N))
= q−

1
2
(N−1)|R|det1≤i,j≤N (q(−i+N)(Rj−j+N))

det1≤i,j≤N (q(−i+N)(−j+N))

= q−
1
2
(N−1)|R|

∏
i<j≤N

(
qRi−i+N − qRj−j+N

)
∏

i<j≤N (q−i+N − q−j+N )

= q
P

j(j−
1
2
− 1

2
N)Rj

∏

i<j≤N

1 − qj−i+Ri−Rj

1 − qj−i

= q
P

j(j−
1
2
− 1

2
N)Rj

∏

i<j≤P

1 − qj−i+Ri−Rj

1 − qj−i

∏

i≤P<j≤N

1 − qj−i+Ri

1 − qj−i

= q
P

j(j−
1
2
− 1

2
N)Rj



∏

i<j≤P

(1 − qj−i+Ri−Rj )





∏

i<j≤P

1

1 − qj−i




×




P∏

i=1

N−P∏

j=1

(1 − qP+j−i+Ri)






P∏

i=1

N−P∏

j=1

1

1 − qP+j−i


 . (A.2)

The annulus diagrams between D-branes
∏

i<j≤P (1−e−(yi−yj)) contribute the first angular

bracket in the last expression. The third represents the D-brane amplitudes:

P∏

i=1

N−P∏

j=1

(1 − qP+j−i+Ri) =
P∏

i=1

∞∏

j=1

1 − qP+j−i+Ri

1 − qN+j−i+Ri

=
P∏

i=1

exp
∞∑

n=1

e−nyi − e−n(et+yi)

n[n]
. (A.3)

Here we have defined the shifted Kähler modulus t̃ = gs(N−P ). The product of the second

and the fourth brackets in (A.2) is the ratio of closed string amplitudes with different values

of moduli:



∏

i<j≤P

1

1 − qj−i






P∏

i=1

N−P∏

j=1

1

1 − qP+j−i


 =




P∏

j=1

1

(1 − qj)P−j






P∏

i=1

N−P∏

j=1

1

1 − qi+j−1




=




P∏

j=1

(1 − qj)j

(1 − qj)P





∞∏

i=1

∞∏

j=1

1 − qP+i+j−1

1 − qi+j−1

1 − qN−P+i+j−1

1 − qN+i+j−1




=



∞∏

j=1

(1 − qj)j(1 − qP+j)P

(1 − qj)P (1 − qP+j)P+j





∞∏

j=1

(1 − qP+j)j(1 − qN−P+j)j

(1 − qj)j(1 − qN+j)j




= ξ(q)P
∞∏

j=1

(1 − qN−P+j)j

(1 − qN+j)j
= ξ(q)P exp

(
∞∑

n=1

e−nt

n[n]2
−
∞∑

n=1

e−net

n[n]2

)
. (A.4)
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To summarize, we have found that

[
exp−

∞∑

n=1

e−nt

n[n]2

]
W

(N)
R (q) =


q

P
j(j−

1
2
− 1

2
N)Rjξ(q)P

∏

i<j≤P

(1 − e−(yi−yj))


 (A.5)

×

[
P∏

i=1

exp
∞∑

n=1

e−nyi − e−n(et+yi)

n[n]

][
exp−

∞∑

n=1

e−net

n[n]2

]
.

Let us express (A.5) in a new form, where the precise expression of the D-brane amplitude

does not appear. We define the generating functionals, or Fourier transforms, of Wilson

loop vevs [30]:

G
(N)
+ (q, V ) :=

∑

R

W
(N)
R (q)TrRV, (A.6)

G
(N)
− (q, V ) :=

∑

R

W
(N)
R (q)(−1)|R|TrRT V. (A.7)

For the unknot we have

G
(N)
± (q, V ) =

N∏

i=1

det(1 − qi−(N+1)/2V )∓1 = exp

(
±
∞∑

n=1

e
1
2
gsN − e−

1
2
gsN

n[n]

)
TrV n. (A.8)

Thus (A.5) can be written as

W
(N)
R (q) = NR G

(N−P )
+ (q, e−

et/2UR), (A.9)

where we have defined the knot-independent factor

NR ≡ q
P

j(j−
1
2
− 1

2
N)Rjξ(q)P



∏

i<j≤P

(1 − e−(yi−yj))


 exp

(
∞∑

n=1

e−net − e−nt

n[n]2

)
. (A.10)

Up to NR, (A.9) tells us that the unknot Wilson loop vev is the Fourier transform of its

own. The r.h.s. depends on R almost exclusively through e−yi , just like it depends on

N only through e−t and e−et. Though we derived (A.9) for the unknot, we conjecture

that the relation between the knot polynomials WR(q, λ) ≡ W
(N)
R (q) (here λ = qN ) and

their generating functional(= D-brane partition function) G+(q, λ, V ) ≡ G
(N)
+ (q, V ) should

hold more generally for any knot with a universal normalization factor NR. It would be

interesting to check the conjecture for torus knots, together with the corresponding relation

involving G−. The results for torus knots in [32] may be useful.

To rewrite (A.9) in the form of (3.3), note that the Chern-Simons partition function

can be identified with the resolved conifold partition function [16]:

S
(N)
00 =

( gs

2π

)N/2
e−

πi
4

N2
q−N(N−1)/12ξ(q)−NM(q) exp

(
−
∑

n

e−nt

n[n]2

)
. (A.11)

For precise equality, we should multiply the r.h.s. of (3.3) by the prefactor that contains

genus-zero and -one contributions:

( gs

2π

)P/2
e−(N2−(N−P )2) 1

4
πiq

P
j(j−

1
2
−N

2
)Rj−

N(N−1)
12

+
(N−P )(N−P−1)

12 . (A.12)
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As is often the case for low-genus contributions, the topological string interpretation of this

prefactor is not clear.

B. Operator formalism

Let us review the relation between the representation theory of U(N) and two dimensional

bosons and fermions in two dimensions. The formalism is useful in deriving the group

theory identities in the main text and dealing with canonical quantization of Chern-Simons

theory on T 2.

Let us consider the mode expansion of a chiral boson φ(z) and fermions ψ(z), ψ(z) in

two dimensions, which are related by bosonization:

φ(z) = i
∑

n6=0

αn

nzn
, ψ(z) =

∑

r∈Z+ 1
2

ψr

zr+1/2
, ψ(z) =

∑

r∈Z+ 1
2

ψr

zr+1/2
, (B.1)

i∂φ =: ψψ :, ψ =: eiφ :, ψ =: e−iφ : . (B.2)

The oscillator modes satisfy the commutation relations:

[αn, αm] = nδn+m,0 {ψr, ψs} = δr+s,0. (B.3)

We can also define a charge conjugation operator C. It exchanges ψ and ψ:

Cψ(z)C = ψ(z), C2 = 1, C|0〉 = |0〉. (B.4)

Then C acts on i∂φ(z) =: ψ(z)ψ(z) : as:

C∂φ(z)C = −∂φ(z). (B.5)

The connection between Young tableau R and fermions arises from the identification

|R〉 =

d∏

i=1

ψ−ai−1/2ψ−bi−1/2|0〉, (B.6)

where ai ≡ Ri − i, bi = RT
i − i are the Frobenius coordinates of R, and d is the number of

boxes in the diagonal of the Young tableau R. It follows that:

C|R〉 = (−1)|R||RT 〉. (B.7)

Let us now define [33] the operator

Γ±(z) := exp
∞∑

n=1

z±n

n
α±n, (B.8)

which satisfies the relations

Γ+(z+)Γ−(z−) =
1

1 − z+/z−
Γ−(z−)Γ+(z+), Γ+(z)|0〉 = |0〉, 〈0|Γ−(z) = 〈0|. (B.9)
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The skew Schur polynomials can be conveniently expressed as

sR/Q(x) = 〈R|
∏

i

Γ−(x−1
i )|Q〉 = 〈Q|

∏

i

Γ+(xi)|R〉. (B.10)

The familiar Schur polynomials sR(x) ≡ TrRdiag(xi) arise when |Q〉 = |0〉. In terms of the

Schur polynomials, the skew Schur polynomials are given by

sR/Q(x) =
∑

R′

NR
QR′sR′(x), (B.11)

where NR
QR′ are the Littlewood-Richardson coefficients.

C. Topological vertex amplitude

We use the convention such that q is replaced by q−1 relative to [24]. Explicitly the

topological vertex amplitude is given, with slight abuse of notation, by:

CR1R2R3(q) = q−
1
2
(κR2

+κR3
)sR2

T (qi−1/2)
∑

Q

sR1/Q(q−(RT
2 )i+i−1/2)sR3

T /Q(q−(R2)i+i−1/2).

(C.1)

Here sR1/R2
is a skew Schur function. The index i runs from 1 to ∞.

In the next appendix, we need the crystal representation of the topological vertex.

This is obtained by a simple manipulation of the results in [33]:

CR1R2R3 = M(q)−1q−
1
2
κR1

+ 1
2
||RT

3 ||
2
〈R2|

[
∞∏

i=1

Γ±(qi−1/2)

][
∞∏

i=1

Γ±(q−i+1/2)

]
∣∣R1

T
〉
.(C.2)

In this expression, the pattern of Γ± is determined by R3 as described in [33], and the

border between the two products is the diagonal of R3.

The partition function of topological strings on any toric Calabi-Yau manifold, with

or without D-branes, can be computed by gluing several topological vertices. The gluing

rules are explained in [24].

D. An identity for string/brane transitions

The aim of this appendix is to prove the identity (2.7).
∑

Q2,Q′
2

C·Q2R3(−1)|Q2|q
1
2
κQ2TrQ2/Q′

2
UR(−1)|Q

′
2|TrR2

T /Q′
2

TUR
−1

=
∑

Q2,Q′
2

〈R3

[
∞∏

i=1

Γ−(q−i+1/2)

][
∞∏

i=1

Γ+(qi−1/2)

]
|Q2

T 〉(−1)|Q2|〈Q2|

×

[
P∏

i=1

Γ−(q−Ri+i−P−1/2)

]
|Q′2〉(−1)|Q

′
2|〈Q′2

T |

[
P∏

i=1

Γ+(q−Ri+i−P−1/2)

]
|R2

T 〉

= 〈R3|

[
∞∏

i=1

Γ−(q−i+1/2)

][
∞∏

i=1

Γ+(qi−1/2)

]
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×C

[
P∏

i=1

Γ−(q−Ri+i−P−1/2)

]
C

[
P∏

i=1

Γ+(q−Ri+i−P−1/2)

]
|R2

T 〉

= 〈R3|

[
∞∏

i=1

Γ−(q−i+1/2)

][
∞∏

i=1

Γ+(qi−1/2)

]

×

[
P∏

i=1

Γ−1
− (q−Ri+i−P−1/2)

][
P∏

i=1

Γ+(q−Ri+i−P−1/2)

]
|R2

T 〉

= 〈R3|

[
∞∏

i=1

Γ+(qi−1/2)

][
→∞∏

i=1

Γ−(q−i+1/2)

][
P←∏

i=1

Γ−1
− (q−Ri+i−P−1/2)Γ+(q−Ri+i−P−1/2)

]

×|R2
T 〉M(q)−1

P∏

i=1

i−1∏

j=1

(1 − q−Ri+i+Rj−j)−1

= 〈R3|

[
∞∏

i=1

Γ±(qi−1/2)

][
→∞∏

i=1

Γ∓(q−i+1/2)

]
|R2

T 〉

×qP |R3|−P |R2|M(q)−1
P∏

i=1

i−1∏

j=1

(1 − q−Ri+i+Rj−j)−1



∞∏

j=1

(1 − qj)




P

= ξ(q)−P
∏

1≤i<j≤P

(1 − e−(ai−aj))−1CRR2R3q
1
2
κR2
− 1

2
||RT ||2qP |R3|−P |R2|. (D.1)

Here we used the crystal representation (C.2) of the topological vertex. The arrows above

the product symbols indicate the direction we order the factors.
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